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Abstract

Irradiation of benzene solutions containing pyrene and electron-deficient arylalkenes such as E- and Z-
methyl cinnamates afforded (2n+2m) photocycloadducts including 1:2-cycloadduct in high yields in a
stereospecific and endo-selective manner. Sandwich-type singlet exciplexes between pyrene and arylalkenes
were proposed as reactive intermediates. © 2000 Elsevier Science Ltd. All rights reserved.
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Photocycloaddition of unsaturated compounds to aromatic rings has received considerable
attention from synthetic and mechanistic viewpoints in the last three decades.!> Pyrene is a
typical aromatic hydrocarbon which has wide-spread m-electrons and emits quite an intense blue
monomer fluorescence and strong excimer fluorescence.® Therefore, the photochemical and
photophysical properties of pyrene monomer and/or excimer have been well investigated in the
fields of the electron donor—acceptor interactions, the fluorescent probes, the chemosensors and
so on.* However, the photochemical reactivity of pyrene including the conversion of pyrene itself
has been scarcely known.> We now report the stereospecific and endo-selective (2n+2m) photo-
cycloaddition of pyrene and pyrene derivatives with arylalkenes, giving 1:1- and 1:2-cycloadducts.

Irradiation of a benzene solution containing pyrene (1, 0.02 mol/dm?) and an excess amount of
E-methyl cinnamate (#-2a, 0.1 mol/dm?) with a high-pressure Hg lamp through a Pyrex filter
under an argon atmosphere for 1 h afforded two kinds of (2n+27) photocycloadducts #-3a and
t-4a in a 25:1 ratio in high yields (80-90%) (Scheme 1). For prolonged irradiation, a 1:2-cyclo-
adduct 5a was precipitated accompanying the formation of Z-methyl cinnamate (¢-2a) and trace
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amounts of other isomeric photocycloadducts ¢-3a and c¢-4a. Similar irradiation of 1 and ¢-2a
stereospecifically afforded ¢-3a and c¢-4a in a 7:1 ratio in good yields.
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Scheme 1.

These photocycloadducts were isolated by column chromatography on silica gel. Their structures
were determined by their spectral properties. The "H NMR spectra of #-3a and ¢-3a showed the
up-field shifted H, protons at § 6.38 and 6.65, which was due to an anisotropic effect of the
phenyl ring. The methyl protons of #-4a and ¢-3a (§ 3.50 and 2.95) appeared at much higher fields
than those of #-3a and c¢-4a (§ 3.65 and 3.64). Finally, the structure of #-3a was confirmed by
X-ray crystallographic analysis.® The structure of 5a, which was insoluble in chloroform and
benzene, was also determined by the 'TH NMR spectrum in DMSO-d; at 130°C. The spectrum
showed the symmetrical proton signals. The photoreaction of #-3a with #-2a afforded 5a
exclusively. These results support the assigned structures for #-3a, t-4a, 5a, ¢-3a, and c-4a. It is
noteworthy that the phenyl group lies at the endo-position in the major 1:1 adducts (#-3a and
¢-3a) and 1:2 adduct (5a) in spite of the predictable steric repulsion. Thus, it becomes clear that
the photoreaction proceeds stereospecifically with stereoretention of the alkene used. Photochemical
cycloreversion of #-3a hardly proceeded under the present reaction conditions, although it is well
known that the cyclobutanes obtained by the photocycloaddition of alkenes to aromatic rings
photocleaved to the starting substrates.!®227

The photocycloaddition of 1 with trans- and cis-cinnamonitriles (z-2b and ¢-2b) similarly gave
the 1:1 and 1:2 cycloadducts (z-3b, t-4b, c-3b, c-4b, and 5b) in a stereospecific and endo-selective
manner. The photoreaction of sterically hindered 2,7-di-fert-butylpyrene (6) with ¢-2a also
gave the 1:1- and 1:2-cycloadducts #-7, #-8, and 9 in 61, 6, and 7% yields, respectively. Although
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trans-stilbene (10a) and styrene did not react with 1 under the same reaction conditions, more
electron-donating or electron-deficient stilbene derivatives such as 1,2-bis(4-methoxyphenyl)-
ethene (10b) and 1,2-bis(4-cyanophenyl)ethene (10c¢) stereospecifically afforded the corresponding
(2n+2m) photocycloadducts in 14 and 13% yields, respectively. Electron-deficient alkenes having
no aryl substituent such as acrylonitrile and methyl acrylate, and electron-donating alkenes such
as 2,3-dimethyl-2-butene and ethyl vinyl ether did not add to 1 under the same conditions.

From the mechanistic viewpoints, the triplet sensitized photoreaction and the fluorescence
quenching experiments were carried out as follows: The photocycloaddition of #-2a or #2b to 1
was not sensitized by triplet sensitizers such as benzophenone (69 kcal/mol) and Michler’s ketone
(61 kcal/mol). The monomer fluorescence of 1 (1x 10> mol/dm?) in benzene was efficiently quenched
by t-2a,b, accompanying the appearance of a weak exciplex emission at longer wavelength (4.«
~450 nm) than the former emission of 1. The excimer fluorescence of 1 (1x 1073 mol/dm?, Jnax
~500 nm) was also efficiently quenched by #-2a, accompanying the appearance of a weak exciplex
emission at a shorter wavelength than the excimer emission. These results were reasonably elucidated
by the singlet exciplex mechanism for the stereospecific and endo-selective photocycloaddition of
arylalkenes to 1. Under the present reaction conditions ([1] >0.01 mol/dm?), the primary process
may be the formation of pyrene excimer '1,* followed by the formation of exciplex '[1---2]* via
exciplex (excimer) substitution.®? This exciplex produces the photocycloadduct efficiently. The
endo-selectivity can be explained by the m—m overlap interaction between 1 and the styryl
chromophores of the arylalkenes via sandwich-type exciplexes as previously reported.'®!0 It is
notable that the photoisomerization of arylalkenes was effectively suppressed by the presence of 1
under the reaction conditions, because the triplet energy of 1 is quite a bit lower than those of
arylalkenes. Scope and detailed mechanism are now under investigation.
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The direct formation of the exciplex '[1---2]* from !'1* and 2 is also a plausible pathway even in the high
concentration of 1, because the formation of '1,* from '1* and 1 is reversible.

The excitation of bis(1-pyrenylmethyl) ether at 350 nm in benzene shows the excimer fluorescence at 507 nm
almost exclusively even at low concentrations. This excimer fluorescence in benzene was efficiently quenched by
t-2a accompanying the exciplex emission at shorter wavelength than the excimer emission. In addition, irradiation
of bis(1-pyrenylmethyl) ether with #-2a afforded a mixture of 1:1-cycloadducts although the structures were not
decided. These results also support the exciplex mechanism, not the triplex mechanism.



